Mechanisms of phagocytosis and host clearance of Pseudomonas aeruginosa.

نویسندگان

  • Rustin R Lovewell
  • Yash R Patankar
  • Brent Berwin
چکیده

Pseudomonas aeruginosa is an opportunistic bacterial pathogen responsible for a high incidence of acute and chronic pulmonary infection. These infections are particularly prevalent in patients with chronic obstructive pulmonary disease and cystic fibrosis: much of the morbidity and pathophysiology associated with these diseases is due to a hypersusceptibility to bacterial infection. Innate immunity, primarily through inflammatory cytokine production, cellular recruitment, and phagocytic clearance by neutrophils and macrophages, is the key to endogenous control of P. aeruginosa infection. In this review, we highlight recent advances toward understanding the innate immune response to P. aeruginosa, with a focus on the role of phagocytes in control of P. aeruginosa infection. Specifically, we summarize the cellular and molecular mechanisms of phagocytic recognition and uptake of P. aeruginosa, and how current animal models of P. aeruginosa infection reflect clinical observations in the context of phagocytic clearance of the bacteria. Several notable phenotypic changes to the bacteria are consistently observed during chronic pulmonary infections, including changes to mucoidy and flagellar motility, that likely enable or reflect their ability to persist. These traits are likewise examined in the context of how the bacteria avoid phagocytic clearance, inflammation, and sterilizing immunity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of PAR2 in murine pulmonary pseudomonal infection.

Proteinases can influence lung inflammation by various mechanisms, including via cleavage and activation of protease-activated receptors (PAR) such as PAR2. In addition, proteinases such as neutrophil and/or Pseudomonas-derived elastase can disarm PAR2 resulting in loss of PAR2 signaling. Currently, the role of PAR2 in host defense against bacterial infection is not known. Using a murine model ...

متن کامل

NKG2D is critical for NK cell activation in host defense against Pseudomonas aeruginosa respiratory infection.

Pseudomonas aeruginosa is a major cause of nosocomial respiratory infections. The eradication of P. aeruginosa from the lung involves the orchestrated actions of the pulmonary epithelium and both resident and recruited immune cells. The NKG2D receptor is constitutively expressed on the surface of circulating and tissue-resident NK cells (and other cytotoxic lymphocytes), and is capable of contr...

متن کامل

The Effect of Combination of Pseudomonas aeruginosa Alginate and an Immunomodulator Protein of Garlic on Opsonophagocytosis in Murine Model

Background & Aims: Chronic pulmonary infection in patients with cystic fibrosis is predominantly due to infection by mucoid strains of Pseudomonas aeruginosa. Mucoid P. aeruginosa is due to the production of exopolysaccharide called also alginate. Alginate in addition to interference with the clearance of lung has antiphagocytic property. Optimal killing activity of P. aeruginosa requires opson...

متن کامل

Heat-shock response increases lung injury caused by Pseudomonas aeruginosa via an interleukin-10-dependent mechanism in mice.

BACKGROUND The heat-shock response (HSR) protects from insults, such as ischemia-reperfusion injury, by inhibiting signaling pathways activated by sterile inflammation. However, the mechanisms by which the HSR activation would modulate lung damage and host response to a bacterial lung infection remain unknown. METHODS HSR was activated with whole-body hyperthermia or by intraperitoneal geldan...

متن کامل

Pseudomonas aeruginosa flagellar motility activates the phagocyte PI3K/Akt pathway to induce phagocytic engulfment.

Phagocytosis of the bacterial pathogen Pseudomonas aeruginosa is the primary means by which the host controls bacterially induced pneumonia during lung infection. Previous studies have identified flagellar swimming motility as a key pathogen-associated molecular pattern (PAMP) recognized by phagocytes to initiate engulfment. Correspondingly, loss of flagellar motility is observed during chronic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Lung cellular and molecular physiology

دوره 306 7  شماره 

صفحات  -

تاریخ انتشار 2014